
For your reference, the basic equations in cylindrical polar coordinates are given after 
Problem #4. 
 

1) 

 
 
Wind blowing past a flag causes it to “flap” in the breeze.  The flapping frequency ω  is 
assumed to be a function of the wind speed V, air density ρ , gravitational acceleration g, 
length of the flag L, and the “area density” Aρ  (which has dimensions 2LM ) of the flag 
material. 

a) Using the Buckingham Pi Theorem, determine the relevant dimensionless groups 
relating the flapping frequency and the other variables. 

For parts (b) – (d):  We wish to test a model of a large flag in a wind tunnel to determine 
the flapping frequency by using a 1/10 scale model.   

b) What is the required area density of the model flag material in terms of that of the 
actual flag? 

c) At what wind speed should the model flag be tested in the wind tunnel? 

d) If the model flag flaps at a frequency of Mω , given the parameters above, what will 
be the flapping frequency of the actual flag? 
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2) Consider a cylindrical container of inner radius R = 25 cm containing liquid water 
(density ρ = 1000 kg/m3), initially at rest, of depth ho = 10 cm.   

a) The container is initially sealed, with an absolute pressure at the free surface of po 
= 30 kPa.  What is the absolute pressure at the bottom of the water inside the 
container? 

 
For parts (b) – (d):  The container is then opened to air at an absolute pressure of 100 
kPa, and rotated about its centerline at a constant angular speed ω.  The water inside 
the container rotates with the container as a rigid body.   
 
b) Consider Euler’s equations (i.e., the equations of motion for an inviscid fluid in 

the presence of gravity).  Use these equations to derive the radial pressure 
gradient /p r∂ ∂  in the water.   

 
c) Euler’s equations can be used to show that the equation for the free surface of the 

water in the rotating container is: 
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What is the maximum angular speed ωw where water completely covers the 
bottom of the container? 
 

d) If the water is replaced with oil (density ρo = 900 kg/m3), what is the maximum 
angular speed ωo where oil completely covers the bottom of the container? 
 
 

 

 

 



3) A two-dimensional body moves in still air to the left along the x-direction at a speed 
of 100 ft/s.  For a fixed coordinate system, then the velocity profile u(y) of the air past 
at Section 2 (which was previously disturbed by the body) can be approximated as: 
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 as shown in the sketch below. 
 
 

a) Draw the velocity profile and the control volume for a coordinate system fixed on 
the body. 

 
b) Calculate the drag force exerted by air on the body per unit length normal to the 

page.   
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4) A massless piston moving at a constant velocity U pushes fluid (of viscosity µ and 
density ρ) through a long pipe of internal diameter D as shown schematically in the 
sketch below (pipe length >> D).   

Assume that: 

i) the transients associated with the onset of the motion have died out 
ii) the motion of the fluid becomes fully-developed and laminar within a few pipe 

diameters downstream of the piston 
iii) the motion of the piston is frictionless and the effects of the fluid on its left side 

are negligible 
iv) the pressure at the downstream end of the pipe is atmospheric. 
 
Determine: 
 
a) The velocity distribution in the fully-developed section of the pipe. 
 
b) The pressure gradient in the fully-developed section of the pipe in terms of the 

piston velocity and diameter (U and D, respectively) and the other relevant 
parameters. 

 
c) The force that is necessary to push the fluid through the segment L of the pipe in 

which the fluid’s motion is fully-developed and laminar (marked by the shaded 
domain in the sketch).  Is that force the same as the force that is needed to push 
the piston?  Explain why. 
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Continuity   
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Navier-Stokes Equations 
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