
Special Instructions: 
 

Please choose 3 out of the four problems given in this exam and clearly 
indicate which 3 problems you want to be graded. If you fail to clearly identify 
your choices or choose to do all 4 problems, the first three problems will be 
graded. 



Problem 1: 
Figure 1(a) shows a schematic of an air bearing, which is used in pair as shown in 
Figure 1(b) to regulate the armature (mass m) in the x direction about its center. For a 
given geometry and constant supply pressure ps, the mass flow-rte of the supply and 
exhaust air, q and qo, are given respectively by  
 

( )sq a p p p= −  and ( )o aq b p p h= −  
 

where a and b are constants; p is the average pressure in the air pocket; h is the 
dimension of the air gap; and pa is the atmospheric pressure.  Assume that the effective 
area of the air bearing is Ae, and that the mass of the air stored in the air pocket is given 
by M cp dh= +  where c and d are constants.  Derive a linearized dynamic equation to 
describe the motion of the armature, h(t) and give the criteria for the stability of the air 
bearing regulator. 
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Problem 2: 
Consider the mass-spring-damper system shown in the figure below where u and x 
denote the input and output displacements, respectively: 
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a) Show that the input-output transfer function of the system (X/U) after normalizing the 
time variable can be expressed by 
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Determine the time normalization factor and the damping ratio ζ in terms of the system 
parameters (m,b, and k). 
 
b) Derive an expression for the unit impulse and step responses of the system in terms 
of ζ. 
 
c) Derive a neat expression for the maximum overshoot percentage of the step 
response of the system assuming 122 ≤ζ≤ . In particular, does the response exhibit 
any overshoot when the system is critically damped ( 1=ζ )? Sketch the corresponding 
unit step response. 
 
d) Determine the phase margin of G(s) as a function of ζ and explain its significance. 

 



Problem 3: 
A unity-feedback control system with a PI compensator is used to control the response 
of a plant described by the following transfer function: 
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(a) Find the range of values of the integral gain for which the closed-loop system output 

is able to follow the reference input r(t) = t2 with a steady state tracking error ess ≤ 6. 
(b) Fixing Ki at the smallest value found in part (a), find the smallest value of the 

proportional gain for which the closed-loop system step response is able to reach 
±2% of its steady state value with a settling time ts,2% ≤ 1.  You may make the 
following simplifying assumption:  the closed-loop poles whose trajectories are 
terminated by finite closed-loop zeros are sufficiently close to those zeros that they 
contribute negligibly to the transient response. 

 



Problem 4: 
Consider the 3rd order system: 
 

)50)(10(
100)(

++
+

=
sss

ssG  

(a)  Sketch the Bode Plot for G(s).  Two sets of grid lines are provided below for your 
convenience. 
 
(b)  KG(s) is placed in the forward path of a unity, negative feedback loop, i.e. the 
standard design.  Find the value of K that will result in 10dB gain margin. 
 
(c)  Sketch the Bode plot for KG and indicate the corresponding phase margin on the 
plot. 
 
(d)  What gain K will result in 0 phase margin? 
 
(e)  In addition to the dynamics previously considered, consider additionally a time delay 
of 0.1s added to the transfer function G(s).  What is the phase margin for the gain found 
in part (d). 
 
 
 
 

 



 
 


