

GEORGIA INSTITUTE OF TECHNOLOGY

The George W. Woodruff School of Mechanical Engineering

Ph.D. Qualifiers Exam - Fall Quarter 1998

 Mechanics & Materials EXAM AREA	
Assigned Number (DO NOT SIGN YOUR NAME)	

Please sign your <u>name</u> on the back of this page—

Please **print** your name here.

The Exam Committee will get a copy of this exam and will not be notified whose paper it is until it is graded.

Mechanics of Material, Fall 1998

PLEASE READ BEFORE YOU START:

You are required to finish *only* four (4) of the five (5) problems in the exam. Please circle below the four problems you would like to be graded:

Problem II Problem III Problem IV Problem V

If not specified, the four problems with the lowest scores will be considered (No extra credit will be given for finishing all five problems).

Problem I

A strain gauge rosette consisting of three gauges as shown below is mounted on the surface of a structural component. The component is linear elastic.

- (a) What does each gauge measure?
- (b) Find the maximum shear strain at this point.
- (c) Find the Maximum and minimum normal strains at this point.
- (d) What are the maximum and minimum normal stresses at this point?
- (e) What are the maximum and minimum shear stresses at this point?

Problem II

A circular bar $(E = 30 \text{ Ksi}, \ \nu = 0.25)$ of radius 2 inches is bent at 90 degrees as shown in the sketch below showing *centerline* of the bar. The bar loaded at the end by forces as shown in the sketch. Section a-a contains point A, B, and C as indicated in the sketch, also below.

- (a) Determine the stresses at points A, B and C.
- (b) Show the stresses at point A, B and C as they act on a properly oriented element. Be sure and *clearly* indicate the orientation of elements you sketch.
- (c) If you were to consider plastic failure of the bar at the section containing points A, B and C, which point would be the most critical? For failure, assume that the maximum shear stress criterion holds.

Problem III

Tension tests on a batch of steel show it to yield at 200 MPa. If a thin-walled tube is twisted and stretched as shown below, how much shear stress $\tau_{z\theta}$ can it take without yielding if the tension stress $\sigma_{zz}=70 \text{MPa}$? Use both von Mises and Tresca criteria to determine $\tau_{z\theta}$.

Problem IV

A switching device consists of a rectangular cross-section metal cantilever 200 mm in length and 30 mm in width. The required operating displacement at the free end is ± 2.7 mm. The switch should be designed for infinite fatigue life. Using the fatigue curves given below, determine the maximum height of the cantilever if made from (a) the steel

 $(E_{\text{steel}} = 208 \text{ GPa})$ and (b) the aluminum alloy $(E_{\text{alum.}} = 79 \text{ GPa})$. The deflection at the end of the beam is given by $\delta = \frac{PL^3}{3EI}$.

Problem V

Briefly define/describe the following concepts from fracture mechanics. Use sketches where appropriate.

- 1. Stress fields as given by linear elasticity
- 2. Stress intensity factor
- 3. Resistance curve (R curve)
- 4. Stress singularity
- 5. J-Integral