1.

The infinite beam shown below is permanently attached to an elastic foundation. A
practical example of this problem is a railroad rail (beam) supported by nonrigid ties
and ballast below. The beam supports can be idealized as a continuous elastic
foundation. The foundation has stiffness k that is finite and the beam is straight with
elastic properties E1. The distributed load q is static. Let w(x) represent the beam
deflection. '
A. Draw a free body diagram of the beam near x = 0.
B. Show the forces and moments that act on a differential element of the
beam near x = 0.
C. Write equilibrium equations to find expressions for dV/dx and dM/dx.
D. Write a fourth order governing equation for the beam deflection w(x).
Do not solve.
E. Replace the distributed load with a concentrated load P at x = 0. Draw
estimated plots of beam deflection, bending moment, and transverse shear
force for the length of the beam shown. Do not solve.
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2. In a supersonic wind tunnel, long, thin-walled, cylinders (radius R = 0.9m, thickness
f) are submitted to cycles of internal pressure. The maximum pressure during normal
operating conditions is P, = 5000 kPa. The goal of this problem is to determine the
optimal thickness 7 of the cylinders such that no failure can occur for an internal
pressure as high as twice the Pmay value. Two different failure events are studied:
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- plastic rupture by yielding
- fracture by rapid crack propagation

Determine the stress tensor for the cylinder submitted to an internal pressure P.

. Plastic rupture by vielding: Assuming the cylinder is made of an elastic-perfectly

plastic material (yield strength, ), determine the minimum thickness necessary
to prevent this failure event.

. Fracture by rapid crack propagation: Assume that the most severe initial defects

present within the cylinders are embedded circular cracks of radii a, for which the
stress intensity factor is approximately: Ky= Gag(ﬂ(l)uz. The fracture toughness of
the cylinder material is Kjc. Determine the minimum thickness necessary to
prevent this failure event.
Determine the critical radivs, ¢, for which both failure events occur
simultaneously. '
From a safety viewpoint, which failure event is worse? Answer this question by
qualitatively explaining what happens when the internal pressure is gradually
increased for a cylinder with an initial defect of radius @, for the following cases:

a. dp<d.

b. ay> a;
What is the maximum thickness 7 that shouldn’t be exceeded to prevent the worse
failure event? Use a safety factor of 2.
The following two materials are considered for the cylinder:

a. Steel: 6y = 1000 MPa, Kic = 170 MPa.m'?

b. Aluminum alloy: oy = 400 MPa, Kic = 25 MPam'?
Which material should be selected? What would be the optimal thickness for that
material?
Are there any additional failure events that should be considered to predict the
structural reliability of the cylinders?



a)
b)

You have a unidirectional composite material. Assuming that the fiber modulus is 50
msi and the strength is 500 ksi, the matrix modulus is 0.5 msi and the strength is 20
ksi. The fiber volume fraction is 0.6. {msi = million pounds per square inch; ksi=
thousand pounds per square inch)

Derive the Rule-of-Mixtures for the longitudinal modulus.

Using the fiber and matrix properties, calculate the composite stiffness in the fiber
direction.

Calculate the ultimate strength of the composite in the fiber direction.



4, Given a cylindrical solid whose axis is
parallel to x3 and is limited by the lateral X3
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known that all components of the stress
tensor except oy, and o,; are null at all

points and that all body forces are
negligible.
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(a) Show the a function, ¢ = ¢(x1, x, ), exists such that:
Oy, _9 and 0o, A
0x, ox,

(b) Given that there is no loading on the lateral surface, Sy, show that the function #(x,,x, ) is
constant everywhere on the contour I

(¢) Calculate the equivalent force and moment vectors, 7 and M , at the point O due to all
surface tractions exerted on the top surface S,
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(d) If we choose the contour, T', to be an ellipse described by, _x% + ;—; =1, and we define the
a

2 2
function ¢(x,,x,) to begd = 2{% + z—‘;] , Tepeat part (c).
a



