

GEORGIA INSTITUTE OF TECHNOLOGY

The George W. Woodruff
School of Mechanical Engineering

Mechanics of Materials EXAM AREA Assigned Number (DO NOT SIGN YOUR NAME)

Please sign your <u>name</u> on the back of this page—

Problem I

A block of material is stressed in the x- and y-directions as shown, but rigid walls prevent deformation in the z-direction. The ratio of the two applied stresses is a constant, so that $\sigma_y = \lambda \sigma_x$. Answer the following by deriving equations expressed in terms of σ_x , λ , and the elastic constants of the material:

- a) Does a stress develop in the z-direction? If so, how is it related to σ_x and the other constants involved?
- b) Determine the stiffness $E' = \sigma_x / \varepsilon_x$ for the x-direction.
- c) Compare this apparent modulus $\,E'$ with the elastic modulus $\,E$ from a uniaxial test. (Suggestion: consider $\,\lambda$ values of -1, 0, and 1 and assume $\,\nu=0.3$.)

Problem II

A thin-walled cylindrical pressure tank is fabricated by butt-welding 15-mm thick plate with a spiral seam as shown in the figure. The pressure in the tank is 2.5 GPa. Additional loads are applied to the tank through a rigid end plate as shown in the figure. Please determine

- (a) The normal and shear stresses on the plane of the weld.
- (b) The principal stresses and the maximum shearing stress at a point on the inside surface of the tank.
- (c) The continuity conditions across the weld line.

Problem III

Figure below shows a symmetric structure made of two materials. The properties of the materials are given in the table below:

	Material	Young's Modulus (GPa)	Coefficient of Thermal Expansion (CTE)	Thickness (mm)	Length (mm)
Material 1	Silicon	128.9	2.89 x 10 ⁻⁶ /°C	0.5 (each side)	40
Material 2	Pyroceram Glass	94	$0.3 \times 10^{-6} / ^{\circ}C$	5.0	40

Material 1 is assembled on Material 2 at a stress-free temperature of 320 °C, and the structure is then cooled to room temperature of about 20 °C.

The assembly process and handling could create edge defects or flaws as shown in the figure. The fracture toughness of silicon K_{IC} is about 25.9 N/mm^{3/2} and can be related to the edge crack as:

$$K_{IC} = 1.12\sigma \sqrt{\pi a}$$

where a is the flaw size as shown in the figure.

- State all your assumptions
- Determine if Material 1 is likely to crack, upon cooling to room temperature. If so, determine the maximum flaw size that the structure can withstand without cracking
- Following the assembly process, the structure is thermal cycled between -40 to 125 °C to evaluate its integrity. State whether the chances of cracking are more at -40 or at 125 °C. You need not work through the numbers. Provide a qualitative answer.

Problem IV

An external torque T_A is applied to the composite circular shaft (r_i and r_o inside and outside radii) shown above. The shaft has two longitudinal sections: (a) a top annular section of a single material (shear modulus G_1); and (b) a bottom composite section consisting of two materials with different moduli (annular material G_1 , core material G_2). There is no slippage between the two materials and the bottom end of the shaft is welded to the support.

- 1. Derive an expression for the **twist angle** (ϕ_A) for the top end of the shaft in terms of the applied torque, shear moduli, and shaft dimensions. Clearly state your assumptions.
 - (Note: You may express your answer in terms of the polar moments of inertia)
- 2. Consider two small elements on the outer surface of the shaft (away from the top and bottom ends), one on each of the two longitudinal sections a and b. Find the ratio of radii such that the shear stress on the element on section a (τ_a) is twice the shear stress on the element on section b (τ_b) .

