1. The two blocks used in a measuring device have negligible weight. If the spring is compressed 5 in. when in the position shown, determine the smallest axial force P that the adjustment screw must exert on B in order to start the movement of B downward. The end of the screw is smooth and the coefficient of static friction at all other points of contact is $\mu_s \! = \! 0.3$

2. A center-cracked plate made of AISI 4340 steel has dimensions, as defined in the figure below, of b = 38 mm and t = 6 mm, and it contains an initial crack of half length $a_i = 2$ mm. The stress intensity factor, K, for this crack configuration can be approximated as:

$$K = \sigma \sqrt{\pi a}$$

where σ is the far-field stress. The plate is subjected to tension-to-tension cyclic loading between constant values of minimum and maximum far-field stress, σ_{min} = 0 and σ_{max} = 500 MPa.

- (a) Determine the number of cycles that can be applied before failure occurs. List all your assumptions, and whenever possible, justify the validity of your equations.
- (b) How would you solve question (a) if σ_{min} = 250 MPa instead of 0. You do not need to estimate the number of cycles for this question; instead highlight the main difference(s) with respect to question (a).

You know the following materials properties:

Yield stress, $\sigma_0 = 1255$ MPa

Plane strain Fracture toughness, $K_{IC} = 130 \text{ MPa.m}^{1/2}$

Paris equation (for R =
$$\sigma_{\min}/\sigma_{\max}$$
 = 0): $\frac{da}{dN}(mm/cycle) = 5.11 \times 10^{-10} \times \left(\Delta K(MPa\sqrt{m})\right)^{3.24}$

- 3. Consider a composite bar (1-D) with ends fixed on rigid walls as shown below. When the temperature is T_0 , the interface between Al and Cu is at the middle x = L/2.
 - (a) Please find the position of the interface when the temperature is raised to $T > T_0$. Assume the Young's moduli and the thermal expansion coefficients of Al and Cu are, respectively, E_a , E_c , α_a , and α_c , both materials remain elastic, and these properties do not change with temperature.
 - (b) If it is assumed that Al has yield strength σ_{ya} and behaves elastic-perfectly plastic (to keep things relatively simple) while Cu has a higher yield strength, what is your answer?

