

GEORGIA INSTITUTE OF TECHNOLOGY

The George W. Woodruff
School of Mechanical Engineering

Ph.D. Qualifiers Exam - Fall Semester 2002 Manufacturing EXAM AREA Assigned Number (DO NOT SIGN YOUR NAME)

■ Please sign your <u>name</u> on the back of this page—

Please <u>print</u> your name here.

The Exam Committee will get a copy of this exam and will not be notified whose paper it is until it is graded.

Question #1

You are cold drawing a metal wire from initial diameter = 0.5 mm to final diameter = 0.33 mm.

You have two options to consider:

- (a) drawing the wire through one die.
- (b) drawing the wire through multiple dies (i.e., draw from 0.5 mm to D₁, and then draw from D₁ to 0.33). (N.B. For this option, there is no buffer and no annealing of the wire between the dies.)

The material has strength coefficient K = 315 MPa and a strain hardening coefficient n = 0.54. The die has angle $\alpha = 4^{\circ}$, and friction coefficient $\mu = 0.05$.

Which option would you select and why? Be quantitative in your answer (e.g., draw force, power, etc.).

$$\frac{\sigma_{x_draw}}{2\tau_{flow}} = \left(\frac{1+B}{B}\right) \left(1 - \left(\frac{D_{final}}{D_{initial}}\right)^{2B}\right) + \frac{\sigma_{x_back}}{2\tau_{flow}} \left(\frac{D_{final}}{D_{initial}}\right)^{2B}$$

$$B \equiv \frac{\mu}{\tan \alpha}$$

$$2\tau_{flow} = \frac{K\varepsilon^n}{n+1}$$

				
•				
		_		
		•		
			•	
	-			

•

Question #2

In the figures below are two types of chip geometries produced by the turning of an aluminum bar on a lathe.

- a. Which of these two types of chips is preferred? Why?
- b. Explain what conditions/parameters can affect the formation of these two types of chips.
- c. After the machining operation, which surface would you expect to be "smoother"? Explain.

•

Problem #3

- a) Describe the solidification process in casting a metal alloy. Part of your answer should make use of a phase diagram. Sketch and label a generic phase diagram indicating the location of the alloy you are considering.
- b) Draw two cooling curves. One for a pure metal and another for the alloy you indicated in part 1a.
- c) What is "coring" and how does it occur? Give a detailed description using a phase diagram.
- d) Describe investment casting.

•				
		•		
		r		
				•