Georgia Institute of Technology

The George W. Woodruff School of Mechanical Engineering Nuclear & Radiological Engineering/Medical Physics Program

Ph.D. Qualifier Exam

Spring Semester 2011

Your ID Code

Radiation Physics (Day 1)

Instructions

- 1. Use a separate page for each answer sheet (no front to back answers).
- 2. The question number should be shown on each answer sheet.
- 3. ANSWER 4 OF 6 QUESTIONS ONLY.
- 4. Staple your question sheet to your answer sheets and turn in.

NRE/MP Radiation Physics

Answer any 4 of the following 6 questions.

- Q1. a. Consider a decay chain $A \xrightarrow{\lambda_{AB}} B \xrightarrow{\lambda_{B}} C(stable)$, at t=0, $N_A(0) = N_0$ $N_B(0) = N_C(0) = 0$. Derive an expression for $N_C(t)$.
 - b. Now assume that nucleus A can decay into C from a different channel at the same time besides the one shown in a): $A \xrightarrow{\lambda_{D}} D \xrightarrow{\lambda_{D}} C(stable)$. Derive an expression for $N_{C}(t)$.
- Q2. At t=0, there are exactly N_0 hypothetical radioactive nuclei. At t = T, N_T nuclei are left. The decay constant is calculated in terms of N_0 , N_T and T.
 - a. Assuming that $N_{\rm 0}$ and T are known exactly, estimate the standard deviation of the calculated decay constant.
 - b. After repeating the experiment many times under the same conditions, the standard deviation of the calculated decay constant is measured as σ_{λ} . Comparing the measured value with the estimated value obtained in a), you find the difference is significant. After checking the experiment procedures, it is believed that the measured time T using the timer contains random errors with a standard deviation of σ_{T} . Estimate σ_{T} in terms of σ_{λ} , N_{0} , N_{T} and T.

(Hint: If two variables X and Y are independent, the variance of their product is given by: $Var(XY) = mean(X)^2Var(Y)+mean(Y)^2Var(X)+Var(X)Var(Y)$.)

- Q3. In the following scenarios of <u>elastic scattering</u> between mono-energetic neutrons and various types of nuclei: (a) 1-keV neutrons interacting with ¹H nuclei, (b) 1-keV neutrons interacting with ¹²C nuclei, (c) 10-MeV neutrons interacting with ¹²C nuclei, and (d) 10-MeV neutrons interacting with ²³⁸U nuclei.
 - a. Which scenario produces a scattered neutron that is <u>most isotropic</u> in the <u>center-of-mass</u> system? Apply partial-wave analysis for each scenario to justify your answer. Some constants needed to carry out calculations can be found in Attachment A.
 - b. Which scenario produces a scattered neutron that is <u>most isotropic</u> in the <u>laboratory system?</u> Why?

NRE/MP Radiation Physics - Cont'd.

CONSTANTS

Enged of light		2.00002450 108
Speed of light	С	$2.99792458 \times 10^8 \mathrm{m/s}$
Charge of electron	е	$1.602189 \times 10^{-19} \mathrm{C}$
Boltzmann constant	k	$1.38066 \times 10^{-23} \text{ J/K}$
		$8.6174 \times 10^{-5} \text{eV/K}$
Planck's constant	h	$6.62618 \times 10^{-34} \text{ j} \cdot \text{s}$
		$4.13570 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s}$
	$h = h/2\pi$	$1.054589 \times 10^{-34} \text{ J} \cdot \text{s}$
		$6.58217 \times 10^{-16} \mathrm{eV} \cdot \mathrm{s}$
Gravitational constant	G	$6.6726 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
Avogadro's number	N_{A}	$6.022045 \times 10^{23} \text{ mole}^{-1}$
Universal gas constant	R	8.3144 J/mole · K
Stefan-Boltzmann constant	σ	$5.6703 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$
Rydberg constant	R_{∞}	$1.0973732 \times 10^7 \mathrm{m}^{-1}$
Hydrogen ionization energy	_	13.60580 eV
Bohr radius	a_0 ,	$5.291771 \times 10^{-11} \text{ m}$
Bohr magneton	$\mu_{\rm B}$	$9.27408 \times 10^{-24} \text{ J/T}$
		$5.78838 \times 10^{-5} \text{eV/T}$
Nuclear magneton	μ_{N}	$5.05084 \times 10^{-27} \mathrm{J/T}$
		$3.15245 \times 10^{-8} \mathrm{eV/T}$
Fine structure constant	α	1/137.0360
	hc	1239.853 MeV · fm
Y4	ħc	197.329 MeV · fm
	$e^2/4\pi\epsilon_0$	1.439976 MeV · fm
	- / 10	ALTONO MANY THE

PARTICLE REST MASSES

	u	MeV/c^2
Electron	5.485803×10^{-4}	0.511003
Proton	1.00727647	938.280
Neutron	1.00866501	939,573
Deuteron	2.01355321	1875,628
Alpha	4.00150618	3727,409
η±	 0.1498300	139.5669
n O	0.1448999	134.9745
μ	0.1134292	105.6595

CONVERSION FACTORS

1 eV =
$$1.602189 \times 10^{-19}$$
 J 1 b = 10^{-28} m²
1 u = 931.502 MeV/ c^2 1 Ci = 3.7×10^{10} decays/s = 1.660566×10^{-27} kg

NRE/MP Radiation Physics - Cont'd.

- Q4. In the reaction $\alpha^{+9}Be \rightarrow ^{12}C+n$, find the maximum and minimum neutron energies when the incident a energy is 5.0 MeV. The rest mass for neutron is 1.008665 u, where 1 u = 931.5 MeV. The atomic masses for α , 9Be , and ^{12}C are 4.002603 u, 9.012182 u, and 12.00000 u, respectively.
- Q5. a. Describe what you understand by wave particle duality
 - b How will you determine if an entity with kinetic energy T and rest mass m₀ shows wave like or particle like characteristics?
 - c. What speed (m/s) and kinetic energy would a neutron have if its relativistic mass were 20% greater than its rest mass?
- Q6. a. Quantitatively compare the stopping power of a medium with regards to proton radiation and alpha particle radiation if the two particles have the same velocity.
 - b. What is the ratio of their range in the medium?
 - c. Repeat (a) when the proton and the alpha particle and the proton have the same kinetic energy.