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A one dimensional acoustic field can be expressed as the sum of a travelling wave going
to the right and a travelling wave going to the left. That is (using complex notation) we
can always express the field in the following form

P(x) = Ae™ + Be
a. Show that the field can also be expressed as the sum of two standing waves

Plx) = A sinkx + B, coskx

b. Express AS and és in terms of A and B,

c. Show that the field can also be expressed as the sum of a standing wave and a
travelling wave.

d. Is the decomposition of part ¢ unique? If so, prove it. If not, give a counterexample.



The figure below shows a configuration of three monopole sources, with strengths S, S,, S;.

(a) Under what condition will this configuration produce the cardioid radiation pattern shown?
Also, derive the expression for the time average total radiated acoustic power.

r ( 0.5(1 + cos®)

5 8, 8

(b) Given the configuration shown below how coul

d you choose the source strengths to produce
a cardioid in the direction of 0

o, 1.e. that has a radiation pattern given by 0.5(1 + cos(8-6,)) ?




3. The mean speed of sound in a real gas as a function of temperature may be represented as
¢(T) = VYRT . (1)

We know that there is a temperature perturbation in an acoustic wave which is in phase with the pressure
disturbance. Therefore, the speed of sound is actually different for different parts of a wave, depending on the

local pressure. For a finite amplitude wave (pressure no longer small compared to ambient), this local speed
variation may be significant. The temperature perturbation within a wave is

where
( aT) ol
p),” YT Rp
and where R is the gas constant, R = RyM, with Ry the universal gas constant and M the molecular weight of
the gas, and p’ is the acoustic pressure.

a) Obtain an expression for the local speed of sound within a plane wave as a function of the mean speed of
sound c,, ¥, and acoustic particle velocity u (Note: these should be the ONLY parameters in your result). Hint:

you will need a Taylor series expansion of Eq. (1) about T, the plane wave impedance, and the relation p=RTp.



b) A more rigorous analysis than the one above yields the expression

cloca] =Co+ u(l.';—l)

for the sound speed with respect to a fixed observer. Can you explain the difference between this expression and
the one you derived above?

¢) Comment on the physical significance of the results of parts A and B, particularly as it relates to long-range
propagation. Assuming the temperature effect considered above is the only factor different from your prior
knowledge of linear acoustics, does a finite amplitude wave’s shape remain constant as it propagates?
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A one dimensional acoustic field can be expressed as the sum of a travelling wave going
to the right and a travelling wave going to the left. That is (using complex notation) we
can always express the field in the following form

p(x) = Ae™ + Be™
a. Show that the field can also be expressed as the sum of two standing waves

p(x) = Agsinkx + B coskx

b. Express A and B; in terms of A and B.

¢. Show that the field can also be expressed as the sum of a standing wave and a
travelling wave.

d. Is the decomposition of part ¢ unique? If so, prove it. If not, give a counterexample.



The figure below shows a configuration of three monopole sources, with strengths S;, S,, Ss.

(a) Under what condition will this configuration produce the cardioid radiation pattern shown?
Also, derive the expression for the time average total radiated acoustic power.

r 0.5(1 + cos0)

¢

58,8

(b) Given the configuration shown below how could you choose the source strengths to produce
a cardioid in the direction of 6, , i.e. that has a radiation pattern given by 0.5(1 + cos(8-8,)) ?




3. The mean speed of sound in a real gas as a function of temperature may be represented as
¢(T) = /¥RT . (D

We know that there is a temperature perturbation in an acoustic wave which is in phase with the pressure
disturbance. Therefore, the speed of sound is actually different for different parts of a wave, depending on the
local pressure. For a finite amplitude wave (pressure no longer small compared to ambient), this local speed
variation may be significant. The temperature perturbation within a wave is

T= (%%)op' @

where

), Y Rp
and where R is the gas constant, R = RyM, with R, the universal gas constant and M the molecular weight of
the gas, and p’ is the acoustic pressure.

a) Obtain an expression for the local speed of sound within a plane wave as a function of the mean speed of
sound ¢, ¥, and acoustic particle velocity u (Note: these should be the ONLY parameters in your result). Hint:

you will need a Taylor series expansion of Eq. (1) about T, the plane wave impedance, and the relation p=RTp.



b) A more rigorous analysis than the one above yields the expression

()

Clocal=co+u 2

for the sound speed with respect to a fixed observer. Can you explain the difference between this expression and
the one you derived above?

c¢) Comment on the physical significance of the results of parts A and B, particularly as it relates to long-range
propagation. Assuming the temperature effect considered above is the only factor different from your prior
knowledge of linear acoustics, does a finite amplitude wave’s shape remain constant as it propagates?



