PLEASE NOTE: Answer all 3 problems.

Problem #1

A thin plate, shown in the figure, is subjected to biaxial stress field of σ_{xx} =1GPa and σ_{yy} =0.5 GPa.

- 1. Calculate the strains in the x, y directions if the plate is made of steel
- 2. Calculate the strains in the x, y directions if the plate is made of 0° unidirectional 60 vol% carbon fiber reinforced epoxy composite and the fibers are oriented in the x-direction
- 3. Calculate the strains in the 1,2 directions (1 direction is parallel to the fiber axis, 2 direction in normal to the fiber axis but in-plane)if the plate is made of a 45° unidirectional 60 vol% carbon fiber reinforced epoxy composite
- 4. Show in a simple 2-D schematic how the plate will deform as a result of the applied stress field for each of the three cases i.e, steel plate, 0° unidirectional and 45° unidirectional carbon fiber reinforced epoxy composites
- 5. What is the definition of
 - a) an isotropic material
 - b) orthotropic material
 - c) anisotropic

List and justify your assumptions

DATA GIVEN

Material	Modulus (GPa)	Poisson's ratio
steel	207	0.33
ероху	3.6	0.35
fiber	220	0.2

G₁₂=3.254 GPa

 ν_{12} calculated using the rule of mixtures

 $v_{21}=v_{12}$ E_{22}/E_{11} , where E_{11} and E_{22} are the longitudinal and transverse modulus of the plate $V_f = 60\%$ (volume fraction of the fibers)

Problem # 2:

- 1) Consider the notched member shown below. Assume it is loaded sufficiently for local yielding to occur, and then completely unloaded (P = 0). For this loading scenario:
 - a. plot a schematic of the nominal stress, S (S = P/A with A being the gross cross-section area) as a function of local strain at the notch root, ε_{y} ;
 - b. plot a schematic of the local stress at the notch root, σ_{γ} , versus ϵ_{γ} ;
 - c. discuss how these plots (a and b) could be obtained in a more quantitative manner;
 - d. Upon unloading (P = 0), plot a schematic of the normal stress, σ_y , as a function of distance x from the notch root.

- 2) Consider a similar notched member (see image below) for which two different load histories are applied (see left and right plots of nominal stress, S, versus time).
 - For each load history, plot a schematic of the local stress versus local strain at the notch root (assume the first cycle promotes significant plastic deformation at the notch).
 - b. Which load history should result in a longer fatigue life and why (assume that the low amplitude cycling continues until failure of the component)?
 - c. How would you estimate the fatigue life for this notched member for each load configuration? List your main assumptions.

Problem #3

Consider a 6-bar truss structure as shown in Figure 1. All the bars in the truss have the same cross-sectional area of A. Bars AB and CD are made of linear elastic materials, which are characterized by Young's moduli E_1 and E_2 and coefficients of thermal expansion α_1 and α_2 . All the other bars are considered to be rigid with zero coefficient of thermal expansion. The structure is initially stress-free.

- (a) Determine the stress developed in each bar due to a small, uniform temperature increase $\triangle T$ throughout the entire structure.
- (b) How would your answer to (a) change if the structure is simultaneously subjected to the above thermal loading and a pair of compressive forces of magnitude F on joints A and B?

Figure 1